The astringency , error and stability of the numerical method are researched . zero matrix method , constant matrix method , and jacobian matrix method are constructed in order to improve numerical precision and efficiency . the steps for calculating matrix exponential function using pade approach method are given out 研究了所提西安理工大學(xué)博士學(xué)位論文數(shù)值計(jì)算方法的誤差、穩(wěn)定性、收斂性等數(shù)學(xué)性質(zhì),在計(jì)算精度和計(jì)算效率兩方面提出了一些改進(jìn)措施,構(gòu)造了零矩陣法、常數(shù)矩陣法、雅可比矩陣法等計(jì)算格式,給出了利川pade逼近計(jì)算矩陣指數(shù)函數(shù)的求解步驟。